Shadow Banking

Alexi Savov

New York University Stern School of Business

Micro Foundations for Macro Finance Workshop Amsterdam, August 2014

Shadow banking and liquidity transformation

- 1. Three perspectives on shadow banking
 - i. Regulatory arbitrage
 - ii. Neglected risks
 - iii. Liquidity transformation

Shadow banking and liquidity transformation

- 1. Three perspectives on shadow banking
 - i. Regulatory arbitrage
 - ii. Neglected risks
 - iii. Liquidity transformation
- 2. Liquidity transformation
 - Creating money-like securities from risky illiquid assets (ABCP, Repo)
 - Fragile liquidity, evaporates quickly

Shadow banking and liquidity transformation

- 1. Three perspectives on shadow banking
 - i. Regulatory arbitrage
 - ii. Neglected risks
 - iii. Liquidity transformation
- 2. Liquidity transformation
 - Creating money-like securities from risky illiquid assets (ABCP, Repo)
 - Fragile liquidity, evaporates quickly
- 3. Welfare tradeoff (pecuniary externalities)
 - Good times better, bad times worse
 - Rationale for regulation

Demand for money-like claims has grown

1. Cash pools have limited access to M2 \Rightarrow invest in "shadow money" (Pozsar 2014)

Shadow banking responds to demand for money-like claims

- 1. Sunderam (2013)
 - ABCP issuance correlated with premium for money-like TBills
 - Can explain half of pre-crisis ABCP issuance
- 2. Nagel (2014)
 - GC Repo-TBill spread correlated with opportunity cost of money

Shadow money is uncertainty-sensitive

- 1. Normal-times liquidity that evaporates when uncertainty rises (Kacperczyk and Schnabl 2013)
 - Economizes on collateral when it is more scarce
 - Tradeoff: fragility versus quantity of liquidity

- 1. Command and control: capital requirements, liquidity coverage
 - May backfire due to regulatory arbitrage
 - Harris, Opp, and Opp (2014)

- 1. Command and control: capital requirements, liquidity coverage
 - May backfire due to regulatory arbitrage
 - Harris, Opp, and Opp (2014)
- 2. Supervisory discretion: measurement, stress tests, FSOC
 - Works under neglected risk view; helps limit contagion
 - Acharya, Pedersen, Philippon and Richardson (2010)

- 1. Command and control: capital requirements, liquidity coverage
 - May backfire due to regulatory arbitrage
 - Harris, Opp, and Opp (2014)
- 2. Supervisory discretion: measurement, stress tests, FSOC
 - Works under neglected risk view; helps limit contagion
 - Acharya, Pedersen, Philippon and Richardson (2010)
- 3. Price-based approach: Pigouvian taxation, mandatory insurance
 - Perotti and Suarez (2009); Acharya, Pedersen, Philippon and Richardson (2009)

- 1. Command and control: capital requirements, liquidity coverage
 - May backfire due to regulatory arbitrage
 - Harris, Opp, and Opp (2014)
- 2. Supervisory discretion: measurement, stress tests, FSOC
 - Works under neglected risk view; helps limit contagion
 - Acharya, Pedersen, Philippon and Richardson (2010)
- 3. Price-based approach: Pigouvian taxation, mandatory insurance
 - Perotti and Suarez (2009); Acharya, Pedersen, Philippon and Richardson (2009)
- 4. Public liquidity provision: Fed's reverse repo, floating-rate Treasurys
 - Preserves liquidity supply
 - Emerging consensus: Greenwood, Hanson and Stein (2014); Gorton and Ordonez (2013); Cochrane (2014)
 - Apply Moreira and Savov (2014) to explore how this could work

Crowding out private liquidity transformation

Figure 3. Impact of government supply on financial sector balance sheet, 1914-2011 Panel A. Impact on short, long, and equity net categories

- 1. Krishnamurthy and Vissing-Jorgensen (2013)
 - Government debt negatively related to ST debt in financial sector

- 1. Households demand liquid securities to self-insure against shocks
 - Liquidity \Leftrightarrow low information sensitivity

- 1. Households demand liquid securities to self-insure against shocks
 - Liquidity \Leftrightarrow low information sensitivity
- 2. Intermediaries invest in (safe/risky) real capital and finance with
 - Money m_t safe \Rightarrow liquid
 - Shadow money s_t safe except in a crash \Rightarrow liquid except in a crash
 - Equity residual \Rightarrow illiquid

- 1. Households demand liquid securities to self-insure against shocks
 - Liquidity \Leftrightarrow low information sensitivity
- 2. Intermediaries invest in (safe/risky) real capital and finance with
 - Money m_t safe \Rightarrow liquid
 - Shadow money s_t safe except in a crash \Rightarrow liquid except in a crash
 - Equity residual \Rightarrow illiquid
- 3. Collateral constrains liquidity provision, quantity vs. fragility tradeoff

$$m_t + s_t (1 - \overline{\kappa}) \leq 1 - \kappa_{A,t}$$

- 1. Households demand liquid securities to self-insure against shocks
 - Liquidity \Leftrightarrow low information sensitivity
- 2. Intermediaries invest in (safe/risky) real capital and finance with
 - Money m_t safe \Rightarrow liquid
 - Shadow money s_t safe except in a crash \Rightarrow liquid except in a crash
 - Equity residual \Rightarrow illiquid
- 3. Collateral constrains liquidity provision, quantity vs. fragility tradeoff

$$m_t + s_t \left(1 - \overline{\kappa}
ight) ~\leq~ 1 - \kappa_{\mathcal{A},t}$$

4. Uncertainty drives demand for crash-proof vs. crash-fragile liquidity

Moreira and Savov (2014) equilibrium

• Collateral supply $1 - \kappa_{A,t}$ limits overall liquidity provision

• Optimal mix pinned down by uncertainty λ_t

Balance sheets

Balance sheets with "tax-backed" public money

Equilibrium with "tax-backed" public money

• Spreads

$$\begin{aligned} \mu_{e,t} - \mu_{m,t} &\propto e^{-\tau\lambda_t} e^{-\eta(g_t + m_t + s_t)} + \left(1 - e^{-\tau\lambda_t}\right) e^{-\eta(g_t + m_t)} \\ \mu_{s,t} - \mu_{m,t} &\propto \left(1 - e^{-\tau\lambda_t}\right) e^{-\eta(g_t + m_t)} \end{aligned}$$

Collateral constraint

$$m_t + s_t \left(1 - \overline{\kappa}
ight) \le 1 - \kappa_{\mathcal{A},t}$$

- Public money lowers discount rates
 - Does NOT directly affect incentive to produce shadow money
- Indirect effect through collateral values
 - Raises collateral values if expected to remain in place in bad times, e.g. deposit insurance, TBills, floating-rate Treasurys
 - Lowers them if it disappears, e.g. stigma, fiscal/political constraints

"Tax-backed" public money

 $- - - - - g_t = 0$

Value-weighted capital mix 75% risky.

 Permanent fiscal expansion ⇒ stable liquidity supply ⇒ greater collateral values ⇒ crowds private money <u>in</u>, shadow money <u>out</u>

"Tax-backed" public money in good times only

Value-weighted capital mix 75% risky.

- Liquidity crunch in crisis \Rightarrow collateral values lower ex ante
 - Collateral runs (margin spirals) depress liquidity below level with no public money
- Crowds private money out, shadow money in

"Asset-backed" public money

- Taxation power + commitment
 - Government not subject to collateral constraint unlike private sector
 - Allows for greater liquidity provision
 - Distortions due to taxes, redistribution
 - E.g. deposit insurance
- Fed lacks taxation power
 - Monetary policy via open market operations
 - Uses assets to back liabilities
 - E.g. Fed's reverse repo
- Two types of liquidity policy
 - Fiscal = tax-backed
 - Monetary = asset-backed
 - Trade off: cost of taxation versus effectiveness

Balance sheets, "asset-backed" public money

Balance sheets, "asset-backed" public money

Equilibrium with "asset-backed" public money

Collateral constraint

$$m_t + s_t \left(1 - \overline{\kappa}
ight) ~\leq~ 1 - \kappa_{\mathcal{A},t}$$

- If Fed buys safe asset, private sector collateral $1 \kappa_{A,t}$ falls
 - The financial sector shifts to shadow money
 - Intuition: public money crowds out closest substitute, private money
 - Even total collateral (Fed + banks) can fall if safe asset has flight to quality (negative beta, e.g. Treasurys).
- If Fed buys risky asset, private sector collateral $1 \kappa_{A,t}$ rises
 - Requires taxes to back potential losses
 - The financial sector shifts to money
 - Taxes as additional "collateral", (Fed ultimate "shadow bank")

"Asset-backed" public money

Value-weighted capital mix 75% risky. Public money backed by stock of safe asset.

- Public money backed by safe asset \Rightarrow Less collateral in private hands \Rightarrow Shift to shadow money
- Excess collateral at Fed wasted \Rightarrow Less overall collateral, liquidity

Takeaways

- 1. Emerging consensus for public money to crowd out shadow banking. But...
 - Public money substitute for fully safe securities, e.g. bank deposits
 - Can lead financial sector to substitute toward shadow banking
 - Especially true if public money backed with safe assets
- 2. Tax-backed public money, e.g. floating-rate debt expands liquidity supply
 - Directly by increasing collateral supply
 - Multiplier effect by increasing collateral values
 - Requires counter-cyclical taxation or deficits
- 3. A possible combination: risky-asset backed reverse repo
 - Trades off cost of taxation and effectiveness